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First-passage probability of a random walk on a disordered 
one-dimensional lattice 
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Received 17 Februaly 1992, in final form 11 September 1992 

AbstracL A method is presented which yields the exact slution of the generating function 
for the fiwt-passage probability and related obsetvables, for a one-dimensional random 
walk with random hopping rates on each site. A geometrical and statistical-mechanical 
interpretation of the problem is suggested and is used for obtaining the asymptotic 
properties of the oxupation and 6nt-passage probabilities. The clas of values with the 
propeny of self-averaging is found. 

1. Introduction 

Anomalous diffusion in random systems has received wide attention in the last decade 
[l-31. In spite of considerable progress, many important problems are still open. One 
of the models, intensively studied in the literature, is a onedimensional discrete-time 
random walk on the random lattice [3-lo]. A few attempts to describe the statistics 
of the first-passage time in this model have recently been reported. In [7-91 an 
explicit expression for the mean first-passage time was presented, while in [lo] much 
information about first-passage time distribution, including an asymptotic expression 
for the first-passage time probability, was obtained. The object of main importance 
in these works is the generating function of the first-passage probability. 

This paper is a study of the statistical properties of the first-passage time on 
a disordered one-dimensional lattice. The key step in our formulation consists of a 
summation over trajectories of a random walker and an investigation of the properties 
of the set of all the trajectories. We consider only relatively simple cases, because 
our main purpose here is to demonstrate our method. 

The outline of the paper is as follows. In section 7., we describe the model 
and derive a system of equations for the generating function. In section 3, we find 
an exact solution of this system and present explicit expressions for the generating 
function of lirst-passage probability in terms of the basic transition probabilities. In 
section 4, it is shown that the properties of random walks are essentially determined 
by certain combinatorical characteristics of the onedimensional lattice, namely the 
number of trajectories passing every site of the lattice a given number of times. The 
explicit expression for this number, found in section 4, yields a new representation 
of the generating function, which has the form of a partition function. The saddle- 
point approximation, applied to this partition function, provides asymptotic estimates 
for the time dependence of the first-passage probability. In section 5, the partition- 
function representation is used to prove the property of self-averaging of a class of 
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obsezvables. In appendix A, the system of equations of section 2 is used to derive an 
explicit expression for the first and second moments of fust-passage time in terms of 
the basic transition probabilities. In appendix B, we list some different cases, when 
the generating function may be presented explicitly. 

2. Equations for generating functions 

Consider a random walk which jumps on a discrete onedimensional lattice at integer 
times from site k to site k - 1 with probability L,, or to site k + 1 with probability 
R, = 1 - Lk. The hoppiog probabilities L ,  are chosen independently from site to 
site. We will be mostly interested a consideration of the problems with a given 
choice of { L k } ,  rather then in averaging over different possible choices. 

Let W,(t) be the probability for a random walker to start from point 0 and arrive 
at point n > 0 (the lattice is allowed to have negative as well as positive sites) for 
the first time in t steps (the first-passage probability). It is helpful to introduce the 
corresponding generating function [ll, 121 

From the generating function, W,(t) may be obtained as 

while the kth moment of first-passage time is 

0.3) 

Thus p , ( z )  contains the same information as W,(t). 
If we denote 1, = zL, and rk = zRk then the rule for calculating p ,  (we will 

drop the argument I) is the Same as for calculating a Feynman amplitude: one sums 
over all paths between 0 and n (coming to n only once at the last step) containing 
all possible numbers of steps, and the contribution of each path is the product of 
corresponding 1, or rk for every step. 

Let us also deline bn(z),  the generating function for the occupafion probability 
to start from site n to the left and return back to n without visiting site n + 1 on 
the way. ??or calculating b , ( z )  one sums over all the paths from n to n 'through the 
left', using the Same rules for the contribution of every path as for p , ( z ) .  On figure 
1 we give the examples of the paths contributing to p,(r) and b,(s). 

Using these rules one obtains the following important relations: 

where 1 in right-hand side of (2.5) corresponds to the term t = 0 in the deEnition of 
b, (see (2.1)). 
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Figure 1. %ical paths, mnvibuting to p s ( z )  and b l o [ z ) .  

By iterating (2.4) one gets 

n-1 

P n  = bkrk 
k=U 

This formula expresses pn(x) through {bk}k=u,-,,n-l while (2.5) gives the closed 
system of equations for the bs, which it is convenient to express in the formt 

The solution of this system, presented in the next section, yields by (2.6) an explicit 
expression for the generating function. 

it is sufficient to h o w  
b, near x = 1 to order yi, where y = 1 - x. In appendix A we shall find the explicit 
expression for b, to order yz, which will aUow us to determine the first two moments 
of the first-passage time. 

It is obvious from (2.3) and (2.6) that in order to find 

3. Exact solutions for generating functions and probabilities 

In this section we wiil find the exact solution of (27). For later convenience, let us 
denote z = xz, e, = LIRubu, and ck = L,+,R, and k = 1,2, .... Then from (2.7) 
one has 

1 
= l-Ze, 

k = 2 , 3 ,  ... 1 
b, = 1 - zck-lb&l 

It follows from (3.2), that if one seek b, in the form 

bk = N k / D k  (3.3) 

t For a more general case, when the walk at every integer moment is allowed not only to hop, but also 
to stay at the same site with non-zero probability, the system of equations, equivalent to (2.6) and (29, 
vias presented in [SI. 
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where Nk and Dk are polynomials of z, then Nk = Dk-p  This means that the 
product n; bk, which contributes to pat,, is equal to D;l. The recurrence relation 
for Dk following from (3.2) is 

Dk = Dk-1- .ZCk-iDk-2. 0.4) 

If one seeks Dk as 

Dk = bim)zm 
ma0 

then the m r r e n c e  relations for coefficients him) are 

0.5) 

These relations, together with the initial conditions, following Erom (3.1), lead to 
the explicit solution, which may be easily proved by induction: 

b(O) - 
k -' 

b(km)=O m > mk 

where mk is the integer part of f ( k  + 1): 

For example (3.7) yields 

D, = 1- z( CO + . . .+ cs) + ZZ(%C"+. . .+ CS%+ %Cl+ c4Cl+ CSCl+ C4%+ CSCZ+ CS%) 

- z3(C4%C, 4- Cs%Co f CS%CO f c5%C~), 

Let us restrict ourselves now to the case of the half-infinite lattice, having only 
sites with n >, 0. Then b, = 1, R, = 1 and c, = L,. Let us denote 

then one finally gets 

(3.9) 

(3.10) 
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with bkm) and m, from (3.7) and (3.8). We note that all trajectories, contributing 
to the generating function, must nesessarily include at least one jump from every 
site k < n to the site k + 1, so P,+~ must contain a trivial overall factor 
n:=,rh = xn+ljRn. This factor is explicitly separated out in (3.10), while the 
non-trivial part of pntl is contained in the factor n;=, b,. 

By use of known formulae [13] for the inverse series one obtains 
m m 

Using (2.2) the first-passage probability is derived: 
0 , t  < n + 1 or t - (+I + 1) = 2m + 1 

Wnfl(t) = { j R  d(") t - (n + 1) = 2m a n  

where m = 0,1,2, . . .. 

(3.11) 

m 2 2. 

(3.12) 

(3.13) 

Equations (3.10)-(3.13) yield an explicit expression for the first-passage probability 
and its generating function in terms of the basic transition probabilities for a particular 
realization of the random variables. Some other cases, when the generating function 
may be presented explicitly, are listed in appendix B. 

It is instructive to illustrate the work of (3.12) and (3.13) by considering the simple 
cases of m = 1,2. In the case of m = l o r  t = n+1+2 thewaker makes one jump 
to the left on his way from 0 to n + 1. Since this 'back jump' may be made from 
every site k, 1 < k < n, and occurs with a probability LhR,., = c ~ - ~ ,  it 1s clear, 
that the probability of a path with one (m = 1) back jump is equal to e, e, 
in agreement with (3.13). Similarly, in the case of m = 2 the walker makes two back 
jumps, and the corresponding factor in the probability is the product of corresponding 
a. Then taking into account that there is one possibility of making a back jump from 
sites le, le' > k if k' # k + 1 and two such possibilities if k' = k + 1 (see figure 2). 
one arrives at the result (3.13) for Wn+l(t = n + 1 + 4), where by (3.12) 

I .  

k k+l k+2 k k+l k+2 

Figure 2. %vo possibilities of making tack jumps from sites k t 1 and k t 2 
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Expression @.lo), together with (23), may be used for obtaining different 
moments of first-passage time. 'Ib this end the important relation is 

(3.14) 

following from pn+llz=l = 1. 

4. Wrtition-function representation and an estimation of probabilities 

4.1. The partifion-function representation 

In this section we present a new representation of the generating function, which 
allows us to obtain some asymptotic estimations for the time dependence of the 
first-passage probability. 

Let us consider the simplest case of a half-infinite lattice with sites n 2 0 and a 
walker starting from site n = 0. We denote the non-trivial part of P , + ~  as pntl: 

- n -1%- 1 
@nt1= - n b k = x  n Pn+l 

k = l  

and expand pntl in a Thylor series in the variables { c k } :  

m 

For the coefficients Nko ,..., k n - ,  one has 

The physical interpretation of (4.2) is as follows: a given set of {ki}+o,...,n-l 
corresponds to the paths with ki left and right jump between sites i and i + 1, not 
counting the first necessary one from i to i + 1, which is included in P,+~ (see (4.1)). 
Evely such back jump gives a factor ci = Lj,,Ri m the probability or a factor 
c;z  = cix2 to the generating function, Nk,  ,,.,, km-, is the number of paths with given 
{ki]i=o,,..,,-l and (4.2) is the sum over all possible choices of {IC;]. 

The expansion (4.2) (and the corresponding expansion for pntl) provides us with 
a new view of the problem of random walking. One can consider ci as a signal, 
acting on the random walker, which now plays the role of the black box, and pn,tl 
as a response function. By (4.2) inside the black box the signal convolutes wlth 
coefficients N ,  giving response The signal ci may be fixed or a member of 
a random ensemble, correlated or uncorrelated, but the nature of the problem is 
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determined by the independent constants N, which play a fundamental role in the 
random-walking processes. 

The constants N can be easily determined from the second line of (4.3). The key 
point is that the bk do not depend on c j ,  i 2 k,  so one has the relation 

ak.-s 
. . . -bn I 

kn-1 *=I 
c , = ~  acn-1 c , - l=~  

where each derivative acts on the whole expression on the right Using (3.2) it is easy 
to prove by induction over j that 

Setting j = n and using (4.3), we finally obtain 

Let us now define the new quantity %ko ,,,., k, - ,  as 

- 
%-1 wko ,..., k,-i is the occupation probability of reaching site n from 0 'from the left' 
(i.e. without visiting site n + 1) by all the paths with given set ko,.. . , kn- l .  By (4.2) 

where 

k = ku + , .. + kn-l (4.9) 

while the Fust-passage probability W,+l(t)  to reach site n + 1 and occupation 
probability En(t) to reach site n from the left satisfy the relation 

It is interesting to note that (4.8) and (4.10) relate the problem of a random walk 
to the statistical mechanics of a system of positive integer coordinates ko, ... , kn-l  
with Hamiltonian -log%kiiko,...,k,-l. BY @.lo), R;~w~+~ and s ;~~G,  are the 
canonical partition functions of this system with given k,  while by (4.8) is the 
grand canonical partition function with chemical potential p = -log z. Thus we can 
use the methods developed in statistical mechanics for the evaluation of generating 
functions and corresponding probabilities. 
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4.2. nte eFIimaIion of probabilities 
As an example of an application of this formalism and the utilization of the methods 
of statistical mechanics, we evaluate the asymptotic time dependence of the sum in 
(4.10), which determines the probabilities W,+, and En. By (4.6) one has 

(4.11) 

When all ICi are large, we use the Stirling formula x !  N v'%z"+ie-2, and rewrite 
(4.11) in the form 

(4.12) 

where IC = (ko, ... ,!c,,-~) and 

S(h) = k " l o g L I + ~ ( ( k i - l +  k;)log(k;-i + k i ) - k i - 1 l O g k i - i  
n-1 

i=l 

- kjlogki +k;lOg(RiL;+1)). (4.13) 

Now, denoting the sum in (4.10) as A and approximating it by an integral, one 
has - 
A =  wko ,_._, k.-t 

ka+.-+k.-,=k 

From (4.13) it is clear that S ( k )  is a homogeneous function: 

S(rrc) = yS(k). (4.15) 

Thus introducing in (4.14) the new variables cyi = ki /k, one has 

In the statistical-mechanical interpretation just given k now clearly plays the role 
of the inverse temperature. h r  large k (small temperature), the only non-negligible 
contribution to A comes from the vicinity of the maximum of S(a) on the plane 
z:$'ai = 1, which plays the role of the ground state. The position dm) of this 
m a m u m  is determined by the equations 

'(4.17) 
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(n - 1 equations) and condition ai = 1. Evpanding S(a) up to the terms of 
second order over ai - a!") on the plane x;A1 a; = 1 and calculating (n - 1)- 
dimensional Gaussian integral over this plane, one obtains 

(4.18) 

where D is a determinant of a quadratic form S ( a )  on the plane near a("). 
The derivatives aS/aa, are equal to 

Qu + Q1 -- - log L ,  a s  
8% a U  

-- - log Ri L,+l ( a i - I  + f f A f f i  + ffw) i = 1, ... ,n - 2 as  
aff, ff; 

(4.19) 

(I(") is easy to determine in the case L, = 1 (it is clear that A in this case may 
only represent %;!,Wn, because when L, = 1, Wntl = 0 for all t). The solution 
of (4.17) and (4.19) for Ln ='1 has the form 

I 

where 

Ai = Lj /R ,  

so one has 
n-1 

ff; (") = J") n-1 A,. (4.21) 

It follows from (4.20) that the main contribution to the probabilities comes from 
trajectories satisfying 

j&+l 

IC; ("1 &+1 - - k(")L. $+I :+I (4.22) 

which is a detailed balance-type condition for the statistical system already described. 
For solution (4.21) one has aS/aa, = 0, i = 1 , .  .. , n - 1, and, since S(a) has 

the property 

as 
S ( a )  = aff; 

i=u 
(4.23) 

we find that S ( d m ) )  = 0, and A is asymptotically independent of IC (and t), which 
is expected since A is the occupation probability of point n on a closed (L, = 1) 
lattice, and thus it should approach a constant at t + W. 
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lb determine this constant it is not necessary to actually compute the determinant 
D in (4.18). Instead, by using (4.21) we find that 

(4.24) 

Subsequently, during the time t = n + 2CyA1kiklm) the walker visited site 
i k!?: + k:") times, so in the limit t + 00 or k i 00 the occupation probability 
E?) at site i for the case L, = 1 is 

n-1 

- A, i = O ,  ..., n - 1  (4.25) 1 - - 
n-1 n-1 

2(1+ ci=1 nj,, A,) Ri j=i+l 

(for i = n - 1 the last product should be changed to l), while for ELu) one hast 

(4.26) 1 ("1 kn-1 - - *--zxrz:k$m) - 2 ( l + C ~ ~ " n ~ : ~ A j ) '  

Now by (4.10), (4.18) and (4.26) 

lb evaluate gn when L, # 1, let us assume, as a fust approximation valid for 
small En, that the values aim) do not change. Then at the point a = dm) one gets 

8.9 - = o  i = o ,  ..., 12-2 aaj 
(4.28) 

while equation (4.27) holds true. This implies that the only difference in (4.18) 
between the case L, # 1 and the previous case L, = 1 is the factor ekS, which by 
(4.23) and (4.28) is equal to 

(4.29) 

and by (4.10) and (4.18) 
(*I 

En1 - - Ep&-' (4.30) 

t It is clear that the Same formulae, (4.25) and (4.26), may be obtained as a solution of a stationaty 
master equation Ri-I Wi-1- Wi + Li+l W;+I = 0 with the bounday conditions Ro = L, = I. 

t=n+2k 

I - e- 
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where EA") is the limiting value of occupation probability for L,  = 1, given by (4.26). 
This formula demonstrate that the reduction of occupation probability E, in the 
case L,  $ 1 in comparison with the case L, = 1 occurs due to the possibility of 
escape from the region 0,. . . , n from point n to the right, while the effective number 
of Visits m the point n is the corresponding value in the most important path, ie. 

(..) k,-V 
Including in (4.30) the expression for EL") and ki?! from (4.26) with 

k!") = k = i(t - n), one has an asymptotic relation 

E,(t) = ( l / . $ p ) I <  (4.31) 

where 

(4.32) 

Then, for R, << 1 one has Li'R" = (1 - R,)lIR" w e-l and by (4.10) 
Wn+l(t) = R,E,(t - l), so from (4.31) we get 

~ , + ~ ( t )  = (1/C)e-("-"-')/c (4.33) 

C = 2(& + A,A,-, + ...+ AnAn-1... AI).  

where { = E f R, = A,[, thus giving 

(4.34) 

The value in parentheses is denoted in appendix A by K; (see (116); for our case 
of the lattice witbout negative-numbered sites, K ;  is q u a l  to zero). From (AA) one 
has now 

C = G - - 1  

where 

(4.35) 

is the mean time of first passage from site n to site n + 1. 
Equations (4.33)44.35) provide the asymptotic form of the first-passage 

probability. In [lo] a formulation, very different from that presented here, was 
proposed, and the asymptotic approximation analogous to (4.33) was obtained. This 
approximation gives, in our notation, the value instead of C for the decay rate. 
However, this is not a contradiction, because in the case R,, << 1, considered here, 
C is the main part of G, since it consists of all the terms of G, proportional to 
R;' (see (A.19), (A.13) and (A.6)). On the other hand our formulation does not 
need the assumption n >> 1, used in [lo]. 
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5. On the problem of self-averaging 

Here we want to further explore the interpretation, given in the previous section, of 
the generating function as some form of partition function. An important feature of 
large disordered systems is the self-averaging of free energy. Since the value fintl 
plays the role of partition function, we expect that the corresponding 'free energy', 

is the self-averaging value, i.e. its fluctuations are small for large n. Let us 
show that this is true. 

Since = lJ; bj, we have 

Then log b; can be expanded into a Bylor series with respect to variables { c ~ } ~ ~ $ ~ - , :  

log bi = 5 &+.-+k;-i ,$ . . . ,$:-I I Mko,...,ki-i (5.2) 
ko, ..., ki- i=0 

where 

Using (3.2), coefficients M can be calculated l ie the coefficients N in the 
previous section resulting in 

(5.4) 
where for j = 1 the last product should be changed to 1. 

In this formula, contrary to (4.2), all km are larger than or equal to 1, so that 
(5.1) and (5.4) express log&+, as a sum over %onnected clusters' of all lengths 
j 1. It may be shown, then, using the estimates of the previous section, that the 
contribution of the j th  term to log bi in (5.4) exponentially decreases with j, so that 
only small clusters with length not increasing with n, contribute to log@n+b Due to 
the central limit theorem, this leads us to the conclusion that for large n, logpmtl 
and consequently log P,+~ are self-averagingi. 

Let us now rewrite (22) in the form 

t The exponential decrease of the j th term in (5.4) with j is evident without estimates in the Emit z -+ 0 
which is imponant for the calculation of probabilities (see (2.2)). In the opposite limit I -t 1 which is 
imponant for the calculation of moments (see (23)), the self-averaging of log$,,+l follows hmm (5.1) 
and the relation bklr=t = l / R r s  following f" (24) or (2.7). 
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and along with E, W,(t), given by (2.3), (5.5), introduce corresponding ‘cumulant’ 
Whes ((a, (W,(t))) by 

(5.6) 

(5.7) 

Then, since log(5R,-lp,(z)) is also self-averaging together with log&(=), we may 
state that these are ‘cumulant’ values (5.6) and (5.7), rather than the usual (2.3) and 
(5.59, which are self-averaging. 

correspondingly using the well known formulae for cumulants (see, e.g. [14]), 
following from the definitions (23), (5.9, (5.6) and (5.7). Actual calculations are 
simplified by the relation ~ , ( m ) l ~ , ~  = fin(z)lz=o = It. This relation also implies 
that self-averaging of logp, and log@, cannot be considered as a hivial effect of 
damping by the logarithmic function, of the fluctuations of its argument. 

One can express ((E)) and W,(t))) though { m l < i J < i  and Iw,(~)ln<*l<t 

6. Summary 

We have presented a method for calculating the properties of a discrete-time random 
walk on the one-dimensional random lattice. The method starts with a system of 
equations (2.4) and (2.5) for generating functions. It allows the explicit solution for 
the time dependence of the first-passage and occupation probabilities in section 3 
to be obtained. These solutions, however, were obtained for a particular realization 
of the random variables and it is not clear how to average them over different 
realizations. ’Ib this end, the representation, obtained in section 4, seems to be 
more useful. This representation separates the ’physical’ aspect of the random walk, 
described by the values L k ,  from its ‘geometrical’ aspect, described by the constants 
Nko,...,k,-i’ While the values L, may depend on the particular physical situation, the 

Nko!. . . ,k . -~ describe the inner geometrical properties of the onedimensional 
lattice and do not change from one system to another. Since the expressions, obtained 
in section 4, are all polynomial in { L k } ,  they are convenient for an averaging 
procedure. The ‘partition-function’ representation may also provide a basis for an 
investigation of the effects of correlated disorder. Since this representation has the 
form of the sum over configurations, it allows the use of standard field-theoretical 
methods, as was illustrated by the simple saddle-point evaluation of probabilities. We 
also found a class of %umulant’ probabilities and moments which are self-averaging 
in the thermodynamic limit. 
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Appendix A. The moments of ht-passage time 

In this appendix we shall lind two first moments of first-passage time. Our 
consideration will be constrained to the condition (satisfied in most practically 
interesting cases) that the full probability that a random walker achieves point n > 0 
at any time, which is, by @.I), p,(l), is equal to 1, or, in other words, that the 
probability of going to --CO without visiting point n > 0 is equal to 0. This condition 
is, in fact, independent of n and is satisfied unless L,, IC + --M is abnormally large 
(in particular, it is satisfied in the important case of a half-infinite latrice, cut at some 

Under this condition it is easy to see from (2.4) or (2.7) that bklr=, = I / R k ,  and 
it happens to be convenient to express 6 ,  to order yz, where y = 1 - x, in the form 

no < 0). 

b, =(1/Rk)(1-2ytcc',+y2tc',') (A. 1) 

where tc; and K',' are independent of y. 

y, one has for every n 2 1 
Including this expression in (2.7) and comparing the terms of the same order of 

t c i  = An + Antck-l (112) 

where 

An = Ln/Rn (A31 

tc; = A,, + A,,tc;-, 

and 

(-4.4) 

where 

A,, = 4 ~ 2  +A,  + 4A,n',+, 
= 4 1 ~ 2  + 4 4  - 3A, 

(for the last transformation in (AS) we used (A.2)). 
By iterating (A.2) one has for n 2 1 

tck = A, +A,(A,_,+A,-,( . . .+A,(A,+A,tcb). . .))  
(-4.6) = A, + A,A,-, + ...+ A,An-l ... AI + A,,A,-, ... Altcb 

where KL in turn may be expressed through {Ak},Gu, but we prefer to leave it 
explicit, because it can be expressed through the straightforwardly observable value 
(see later), In the important particular case, when the lattice is cut in point no = 0 
and has no points with n < 0, one has Lo = 0, R, = 1, b u ( x )  = 1 and K; = tc; = 0. 

By iterating (A.4) one has 
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or, by using (A.5), 
n ?1 .. 

K: = 4 x A n  .. . A , , , ( K ~  + ~ 6 )  - 3 x A ,  ... Ak + A,, ... A,K: (AS) 
k = l  k=l  

where for k = n the product An . . . A,,, h the first term should be replaced by 1. 
The first term in right-hand side of (AS) may be transformed using the identity 

An.. .Ak+,~’,  = K;-A,-A,A,_~.-...- A,,A,,-, ... Aktl k = 0 ,... ,n-1 

from which it iF follows that 
(AS) 

An. . .  Ak+l(n;S+ K ; )  = (K; - A, -A,A,-, - Am . . . A k + 2 ) K 6  

k = O,. .  . , n - 2 (A-10) 

A n ( ~ $ - l  + = ~6~6-1- (A.11) 

and 

From (A.8)-(All) one has, after some algebra, 
n-2 

K: = 4 ~ ;  fn + K.: - 4 z A  n... Akczfk +3An ... A ~ K ;  + A,, ... AIR: 
k = l  

n =  1,2, ... (A.12) 

where for n = 1,2 the sum in the right-hand side must be dropped and we introduced 
the notation 

k 

f k = x l c : = q k f t c k , , K ;  k = 1 , 2 ,  ... (-4.13) 
i=l 

k k-1 

~ k = ~ ~ i + ~ ~ , ~ i t l + . . . + ~ , . . . ~ k  le=1,2 ,... (AM) 
k l  i=l 

k 

K ~ , ~  = C A i .  . . A i  k >  j. 
k j  

In (A.12) K;, like K&, may be expressed as a function of {Ak}k.u or as a function 

Putting (Al), (A.6), (A.12) to (2.6) and leaving only the terms of order y and 
of the obsewables 7 and 

y2, one has for pntl : 

pn+, = n bkrk = (1 - y)n+l n(1- 2 y ~ i  + y2& 

(see later). 

n ,, 
k=U k=U 
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It is convinient to make the following transformations in the right-hand side of 
(A.16): 

4 ~ K ; f k - - l + ~ K ~  
k=2 k=l  

n n 

where we used the identity fk-l = fk - "6 and (k12) for K;. 
K; = fk - fk-,, one has for the right-hand side of (A.17) 

NOW putting 

n-2 

4f: + f, - 4c %,k+Zfk + ( 3 4  + K;')%,t 
k = l  

where for n = 1,2 the sum in this expression as well as in the right-hand side of 
(AlS), (A.20) and (A.21) must be dropped. 

Now we have for pn+] up to the order of y2 

so by (2.3) 



First-passage probabilily of a random walk 465 

By (A.19), (A.20) n; and may be expressed in terms of the observables i; and - ti : 

In the case where the {Lk} are independent random variables with the same 
may be easily averaged over distribution for all k, equation (A.19) for 

configurations to yield 

where A = (A,) and angular brackets () denote configurational averaging. 
= 1 and by (AB) and (bL23) 

~ t ,  = K; = 0 as was already mentioned. In this case (A.19) and (k24) coincide with 
the results of [7-91 (see also [6]). 

If the lattice has no sites with n < 0 , then S; = 

Appendix B. More cases allowing explicit representation of the generating function 

Explicit expressions for the generating function, analogous to (3.10) and (3.13), may 
be obtained not only for first passage from 0 to n + 1, but also for some other 
quantities. First, if the lattice has the finite length N n + 1, then the generating 
function for the occupation probabilities may be obtained. This function is equal to 

PZI = Pn+lBn+l (B.1) 

where B,+, is the sum Over all paths, coming from site n + 1 back to n + 1. It 
satisfies the equation 

B,+I = 1 + ( L + l b n ~ n  + T n + l L + A + d B n + l  ( B 4  

where &n+2 is the sum over all paths from n + 2  back to n + 2  ‘through the right’. For 
arbitrary k, Lk expressed through { L l } k < i < N  in explicit form by the same formulae 
as b, through {R;},siS, with the obvio&bterchange Ri + LN-;. From (B.l) and 
(B.2) one gets 

If n + 1 is the last site (n + 1 = N), then T , + ~  = 0 and (3.3) goes to 

end- - 
P ~ + I  - pn+lbn+~ 
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and corresponding probability is 

Second, if the walker started not from 0, but from some site i, then instead of 
ni=obkrk one gets for the generating function of the probability of first passage 
M m  site i to site n + 1, ptil:  

k=i 

where we used (3.3) and relation Ni = D,-l. Similarly, the generating function of 
occupation probability for this initial condition is still given by (B.3) and (€3.4) if we 
replace P,,+~ by pti:  there. 

Finally, on the mfinite lattice these formulae also hold, provided the finite 
sums are convergent when extended to infinity. In conclusion we may state that 
explicit expressions for generating functions (and, consequently, for the corresponding 
probabilities) may be obtained by this approach fo ra  number of different cases. 
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